Oesk T1-99/2 Book 27 BALIL tor deginners

Cover Copy: The place to start if you are just beginning 1in
the world of computer programming.

(title page)

Basic Computer 99/¢2

Book 2: BASIC for Beginners

Copyright ¢ 1983 Texas Instruments Incorporated

Page 1

Book 2: BASIC for Beginners—--Contents

Vou and Computer Programming « « « o« o« a s« « = = » s s = « .'. ;

How to PRINT Messages in the Immediate Mode . .

Performing Calculations with the PRINT Statement = « « o = o &« =

Error Messages and Ways to Correct Errars in the Immediate Mod=

Using Numeric Variables and the LET Statement

Assigning Numeric Expressians to a Numeric VYariable

Using the CALL CLEAR statement « ¢« o « o ¢ o o s = 2 « &

Using String Variables and the LET Statement « « « s o« =

Correcting Errors with DELete and INSErt « o« « « o s » « % =

Using the Comma (,), Semicolon (3), and Colon (%) as PRINT Separators

Jsing the NEW Command

Computer Graphics—-Positioning Characters with CALL VCHAR and CALL
Using ' the Repetition Feature of CALL HCHAR and CALL VCHAR

L [[L L o [

ROVIOW o« « s « « u s & &« a 5 = s s » » s & u & « & s & &

Sl‘IIP].E PFDQF&]HIiHQ“LlnE NuthI‘S 4 w = ¥w ®™w ®w & W s & =5 0

Using the RUN Command
Using the LIST Command to Review Your Program .
How to Edit a Program——Correcting Errors « « .« .
Adding Program Lines « « =« s« ¢ s s « 2 = s s & &»

Removing Program Ling@s « « « » s 2 o o » = o o &
Using the INPUT Statement with a Numeric Variable
Using the INPUT Statement with a String Variable
Using the GO YO Statement--tL.oops—~—BREQGK . « « .
More Practice with the GO TO Gtatement &
Using the FOR-NEXT Loop
Nested FOR-NEXT Loops
Error Conditions associated with FOR-NEXT Loops
REVIBW + = » » = s « = a w s % s v % & » » & « =

Page 2

n
|
=
»
m
]
=
|
»
[]
-
]

]
]
]
]
|
]
]
»
]
L]
o
|
|
|

]
u
-
L]
W
]
L
|

HUHAR

XX

XX
XX
XX

XX

XX
XX

XX
KX

XX
XX

XX
XX
XX
XX

XX

XX -

XX
XX
XX

Ortbar 1)-YY/72 Book ¢t BRSIL tor Heginners

More on PRINT Separators (3 53 %3 s« o« = s 5 o o » =

Understanding the Order of Aritimetic Operations &« ¢« =+ o« o « & s « 2 = = &
Using Parentheses to Alter the Order of Operations « « « o o o o o s & o &
Understanding Scientific NotatioOn .« 4 o o s 5 = 2 & o s s @« s a s s & u »
Using the INT FUNCTIion o« « s« =« o ¢ « s &« =« s # » % &« 5 = &« &« uw & s » a « &«
Using the RND Function and the RANDOMIZE Statement . &« ¢ ¢ ¢ o ¢ v ¢ o o« &
Other Random Number RANGES o« » » & a & 5 & = 3 2 5 a s 5 8 v & &8 a » & & »
A Two-Dice SimulatioOn . « = « = = s @« s « o = & u s &« s 8 ® 3 » a o =« ® =
Error Conditions With RND . &« ¢ & o & 4 2 &« 2 o u » %= » s 8 u 5 « o s a &
Randomized Character Placement . « = v« o = o o n o« 2 ¢« & 8 54 s o 5 » = s =
Using the IF THEN Statement . ¢ « o ¢ 2 ¢ ¢ o 5 « 2 s « s« s s s s &« s = &
Error Conditions with IF THEN . &« &« & ¢ s a s ©» « 2 s s s 5 = #a 5 = 8 = &»
REVI®W « « = 2 = » ® 3 2 5 » = = s a s 8 s« 8 %5 3 a8 = = % %= 2 #« 5 & &« » = =
INdeX & « & »w @« « 2 o % » 5 & 2 5 % = @« a s« @ a % &« 5 & s = & v & s o« & =

Page 3

XX
XX
XX
XX
XX
XX
XX

XX

XX
XX
XX

JLAGOE 1L Yl Wi ke it ke il wup st -

You and Computer Programming

What is computer programming? Nothing mysterious! Programming is simply
communicating with a computer——telling it what to do and when to do 1it.
To program your computer you only need to learn two things: the language
vour computer understands, and the way you talk to it. No lengthy
training periods or super~sophisticated skills are required.

The Language——8RSIC

To communicate with any computer, you need to learn its language. The
language we'll be exploring here is a form of BASIC (short for Beginners
All-purpase Symbolic Instruction Code). BASIC was developed by John
Kemeny -and Thomas Kurtz at Dartmouth College during the middle 1960's.
Although BASIC is only one of many computer languages, it is one of the
most popular in use today. It's easy to learn and simple to use, vet it
is powerful enough to do almost anything you want to do with your
computer.

As you work through this book, vyou'll notice one striking fact about
BASIC: it's very much like English!' You'll see words like PRINT, NEUW,
RUN, and LIST. The meanings of these words in BASIC are almost identical
+o0 the definitions you already know and understand. This is what makes

BASIC so easy to learn and fun to use.
" The Way You Talk to the Computer——the Keyboard

Nows, how do you talk to the computer? Everything you need to use to
communicate with your computer is right there on the keyboard. You type
vour instructions, and the computer “hears" them.

Page 4

OweoP 11-99/2 Book i BARSIC tar Beginners

About this Book

This book guides you step by step through the process of learning BRSIC. The
material included here gives you a good foundation for the continued
development aof your programming skills. Throughout the book, each explanation
of a statement or command is fallowed by one or more examples for you to try
out. Also, you can (and should) experiment with other examples of vour own t0

help you become thoroughly acquainted with the capabilitites of your computer.
Remember: the computer is a tool for your use and enjoyment, not something to

be feared. It has no intelligence, only some extraordinary capabilities. It
does exactly and only what you tell it to dos it can't dg anything by itself.

TO PROGRAM THE COMPUTER:
1. Learn the language (TI-99/2 BASIC).

2. Learn the means of talking to the computer (keyboard).

| T W o m— r——

= ——— ety : r T ana
PR P AR S e e Al Cre D e TR hugerwngre sy b

wo ot [l vei & BOOK % brodll, Tul BlYae gt 3

How to PRINT Messages in the Immediate Mode

In the Immediate Mode, your computer “"immediately" performs each BASIC

statement you've typed in as 300n 4% you PpPi eSS ENIER. Because you can see an
instant response on the screen, the Immedi te Mode is a good way to introduce

and explore certain TI-99/2 BRSIC language statements.

Turn on your television, and then turn on the console. When the title screen
appears, press any key to begin. When you see the next screen, press L for

TI-99/2 BRSIC.

S - Peyaly sl e . A W N el A S S sl vlaiok (LS S ——— - el L — L]

T1-99/2
TEXAS INSTRUMENTS BASIC COMPUTER
TI-99/2 |
BASIC COMPUTER PRESS

i1 FOR TI-99/2 BASIC
READY-PRESS ANY KEY TO BEGIN

1983 TEXAS INSTRUMENTS

"The flashing underline you see on the screen is called the gursor. It tells
you that the computer is ready for you to use.

) »_ ("prompting character" and flashing cursor)
The PRINT statement tells the computer to display something on the screen.
You type the word PRINT, followed by a message enclosed in quotation marks,

and the computer prints the message when you press ENIER.

Note: Type quotation maiks by holding down either the SHIET ar ECIN key while -
pressing the P key.

Page &

Voo bl vyl BOOK Ca DHORL LUl Duagadiiigy o

Type the PRINT statement below:

PRINT “THIS IS A MESSAGE" {your statement to the computer)
THIS IS A MESSAGE (the computer's response)

Remember to press the ENIER key after the ending quotation marks. This is the
computer's cue to perform what you have requested.

NOTE: If you make a mistake, don't worry about it. Just press ENIER and start
over for right now. Correcting errors are covered a little later.

Now type this PRINT statement:

PRINT "HI THERE®
HI THERE

Try another example. Type these words, then press ENIER.

PRINT "I SPEAK BASIC. DO YOU?*

(When you run out of room on a line, just keep typing-—the taﬁputar
automatically returns the cursor to the beginning of the next line.?

Experiment by entering more PRINT statements with your ouwn messages. As long
as you begin and end the wessage with gquotation wmarks, the computer displays

it.
(Notice that the lines move up on the screen when you press ENJER and again

when the computer finishes printing its line. This procedure is called
scrallipa. The cursor shows you where the next line begins.)

Page /

O2éHP TI-9%/¢ Book ¢ broll for peglnners

Performing Calculations with the PRINT Statement

Vou can use PRINT to display numbers. With numbers, von do not need quotation
marks. To try this, type the word PRINT, follow it .y a number, and press

ENIER.

PRINT 4
q

You can also have the computer perform calculations with the PRINT statement.

Study the information below for typing arithmetic symbols on the keyboard.
The computer uses the asterisk (%) for multiplication and the slash (/) for

division.

plus sign + Use the SHIEI key and the = key.
minus sign - | Use the SHIFI key and the / key.
times sign * Use the SHIET key and the 8§ key.
divide sign / Use the / kevy.

decimal point . Use the Periad (.) key.

Try the examples on the right; then make up your own numbers. Try saveral
kinds aof calculations.

Page 8

—.—-—-—'—-—.—-—.—.7— -w.——-—- o -.'- .
._:"_i.:\ﬂ.-.t_ .
1
" -
-

Quéene 11-vYY/ ¢ Baok ca Broli,

PRINT 344
7

PRINT 86159
145

PRINT 1.214613.1498.6
148.9

PRINT 6.4-3.5
2.9

PRINT 99-18
81

PRINT 45%9
405

PRINT 7.98%54.07
447 .4386

PRINT &7/56
1.196428571

- PRINT 42/6

7

ok deyginners

Page 9

—_—— ek —

bl 1L Yy al FIOW R e e BtBree ate el wedddiabiedi 2

Frror Messages and Ways to Correct Errors in the Immediate Mode

Every computer programmer makes mistakes, so don't hesitate to try experiments
of your own as you go through the examples in this book. Errors do not hurt
the computer. It quickly recognizes things 1t cannot do and gives you an
error message such as INCORRECT STATEMENT or CAN'T DC THAT to tell you to try
again. When this happens, you can simply identify the errory retype your line
correctlys and press ENJER again.

Some of the most common errors are typing a wrong letter and omitiing a
necessary part of a statement. For example, here are some things that your
computer does not accept in a PRINT statement: |

1. & misspelling in the word PRINT.

2. A missing or extra quotation aark.

3. Spaces within the ward PRINT.

" Expariment with some intentional errors to become more comfortable with error
messages.

(1) Misspelling in the word PRINT
ﬁIRNT “THIS IS A HESSQGE“
*¥% INCORRECT STRTEHEﬂT %%

(2) Missing or extra quotation marks
PRINT “THIS IS A MESSAGE
%% JINCORRECT STATEMENT **

(3) Spaces within the word PRINT
P RINT "THIS IS A MESSAGE™

. %% INCORRECT STATEMENT *x

Page 10

UeadGP T1=-9Y/2 Book ot DRHLLIL 1O Beylihiners

Try a few more messages with the PRINT statement, introducing intentional
errors so that you become familiar with the error messages.

If, however, you see an error before you press ENIER, you can correct it. The
following shows two ways to correct errors in the Immediate Mode (if you have
not vyet pressed ENIER):

1. While holding down either the SHIFI or the ECIN key, use LEEI GRRBOW (§ key)
to backspace to the error and correct the error by typing over it.

If, while backspacing, you move the cursor past {he errors nove the cursor

to the right with RIGHT SRROW (SBIEY D or ECIN D) until the cursor 1S
positioned over the error. (Note that characters are not erased as you

move the cursor over them. If you need to erase a character or word, use
the SPACE BAR to advance the cursor over the character.)

2. You can press EBRSE (ECIN 3) to erase the entire line and start over.
(Hold down the ECIN key and press 3).

Now look back at the PRINT statements on the previous page. Type the commands
incorrectly (exactly as written), but instead of pressing ENIER and getting an
. error message, correct the errors using one of the ahove methods. |

Experiment with your own intentional errors and practice correcting them
before you press ENJER. As you continue your work with the computer, make use
of these methods to correct errors. (We'll discuss other ways to correct
errors later in this book.)

Page 11

Using Numeric Variables and the LET Statement

A variable is a "name” given to a number or a graoup of characters. Although
there are two types of variables, in this section we'll consider only those
variables that give names to numbers. These are called numeric variables. R

numeric variable is just a name given to a numeric value.

Ac the wotd variahle implies, the value of a variable can be made to change or
vary. A number is assigned to a numeric variable with the LET statement.
Variables can be up to 15 characters long, but they are generally kept fairly

short for convenience.

In the LET statement the word .LET 1s followed by one spacey then the variablé
(the name), then an equals sign, and finally the numeric value you are
assianing to the variable. |

Try a few examples. Type in the following limes, pressing ENIER at the end of
each line. |

LET A=5
LET A2=8
LET ALPHA=10

'You can think of variables as labeled boxes that hold assigned values. Only
one value at a time may be assigned to a given variable, but you can change a

value easily. Type this LET statement, pressing ENIER at the end of the line.

LET A=8

The value of A 15 noO lungeﬁ 5. The § has been replaced by 8.

Now use PRINT statements to check the values you have entered. Type PRIﬁT A -
and press ENIER. S

PRINT A
8

Page 12

ATy T Y N NP U AT SR ey S N N T S RTN L -

Did you notice that this PRINT statement is different from the PRINT
statements we explaored earlier? We didn't put quotation marks around the A
even though it is a letter. That's hecause we didn't want to print the letter
A7 we wanted to see the numeric value assigned to A.

Nows check for the values of A2 and ALPHA. (Remember to press the ENIER key
at the end of each line, even though it 1sn't shown.)

PRINT A2
B

PRINT ALPHA
10

The véiue of every nuwmeric variable is zero if it has not yet been assigned a
value. Try the following PRINT statement.

PRINT F
0

ﬂute: In BASIC, the LET statement is not the only way to assign a numeric
value to a variable. Your computer also accepts the assigmment without the

. word LET. -
| JACK=3
JILL=E

PRINT JRCK®*JILL
15 -

-

In other words, the word LET is optional in BASIC; your computer accepts the
assignment with or without it.

Page 13

Qeééir i1 '7"'?}4"*{'-.'.. Ol o el iUl LDetM a3

Assigning Numeric Expressions to a Numeric Variable

You have just seen how a numeric variable can be assigned a %ingle“number
value. An arithmetic expression (such as 4*5H or A+1) can also be assigned to

a variable.

(If you just completed the previous section, the computer still holds the
following values in memory. If you are just now beginnifg a new session with

 the computer, enter these statements again.)l.

LET A2=8
LET ALPHA=10

You can assign new values to the variable A and check the new value with a
PRINT statement after each one. Enter the following lines. Note that the
variable always appears before the equal sign and the expression always

appears following the equal sign.

LET A=5%3
PRINT A
15

LET AR=A2+ALPHA
PRINT A

18

LET A=R-5
PRINT A
13

LET A=AQ/2
PRINT A
6-5

Page 14

Oae6GE 1L-YYse BOOK v BRRLIL T4 buyliviels

Using the CALL CLEAR Statement

As you type instructions to the computer in the Immediate Mode,y the screen
aventually fills with instructions and the resulting displays. The lines
scroll up the screen as you enter additional instructions. There 1s an easy
way to clear the screen of previous lines so that you can concentrate on the
line you are currently typing. This is done with the CALL CLEAR statement.

When you enter the words CALL CLEAR, the screen is cleared except for the
orompting symbol and the cursor. You can use the CALL CLEAR statement anytime
you like, whether the screen 13 filled or not.

N

A=36
CALL CLEAR

(screen is cleared and the cursor returns to the lower-left-hand corner of
the screen)

The CALL CLEAR statement clears the screen, but not the computer's memory. If
you assign a value to a variable and then clear the screens the computer still

"holds that value in memory. To verify this, tell the computer to PRINT the
value of A.

" PRINT A
%6

Note: fAs you work through this book, you'll see several BRSIC statements that
begin with the word CALL. Your computer has certain built-in suberoacams for
special purposes (such as clearing the screen), and a CALL statement tells the
computer to *call" the subprogram named in the statement. -

Page 15

Uﬁibd'}t’: lj. - A I ijL]ﬂh. (e = AR P WY LI R U WY Y S e

Using String Variables and the LET Statement

The words that you told the computer to PRINT a few pages hack are called
characier stcipgas. A netring” of characters is anything that you enclose 1in
quotation marks. Usually this means alpha c¢i «racters (letters of the
alphabet), but a string can include any character the keyboard can trpe,
including numbers, letters, punctuation, spaces, and symbols.

A string variable is a name given to a “string” of characters. A string
variable name always has a dollar sign () at the end of it. Because of this,
you (and the computer) can always tell string variables from numeric variables.

You already know what numeric variables are: numeric values assigned to names
(variables), like "K=50". String variables differ from numeric variables 1n

the following ways.
i. The variable name must end with a $.
2. The alphanumeric characters in the string must be enclosed 1in

quatation marks. |
2. Strings of numbers cannot have arithmetic operations performed with or

upon them.

Try a couple of examples. Clear the screen (with CALL CLEAR). Using SHIET 4
for the dollar sign ($), enter this. -

_LET W$="HRSTE MRKES WASTE"

PRINT W$
HASTE MAKES WASTE

Notice that the character string is displaved, rather than the string)
variable. As with nuwmeric variables, do not put quotation marks around the
variable in the PRINT statement because you do mot want to print the
characters "W$"; you want to see the value 3ssigned to We. '

Page 14

OesalP T1-YY/¢2 BOok s WHDILL TOU beglithers

Correcting Errors with DElLete and INSert
Earlier you practiced correcting erraors by using the QGRROW keys (§ or Q) 1n

conjunction with either the FCIN or SHIEI keys. You also used ERASE (ECIN 3)
to erase the entire line and start over. There are two other key combinations

that you can use to correct errors. These ares
DELete (ECIN 1l)-—-deletes character(s)
INSeprt (ECIN 2)-—inserts character(s)

Type the following statement exactly as written, but don't press ENIER vet.
PRINT I M LENING TO CORRRRRRECT ERROORS® .

There are obviously several errors in thiﬁ'stateuent. First, you need to
" insert quotation marks before the character I. Backspace with LEET ARROW to
the I. Press INSert (ECIN 2); then type quotation marks (2).

PRINT "I M LENING TO CORRRRRRECT ERROORS

Next, insert an A before the M. To do this, advance the cursor (with RIGHT
. ARROM) to the M. Press INSert and then type an f.

PRINT “I AM LENING TO CORRRRRRECT ERROORG"

Notice that to insert a character, you must determine where you want 1t
inserted and then position the cursor over the character immediately following
that point. Now position the cursar over the first N in LENING. Then insert
an B8 and an B in LENING so that it reads LERRNING. -

PRINT *I AM LEARNING TO CORRRRRRECT ERROORS®

Page 17

You can insert or delete single characters or as many characters as you want.
To delete characters, positiaon the cursor aver the first character you want to
delete., Now let's delete four of the Rs in CORRRRRRECT. Position the cursor
aver the first R3 then press DELete four times (while holding down the ECIN
key, press 1 four times). If you press ECIN 1 down for more than one second,
‘the automatic repeat feature deletes characters more quickly. However, yod
must be careful not to delete too many characters, or you will have to insert
them again.

PRINT "I AM LEARNING TO CORRECT ERROORS®™

Now delete one of the Os in ERROORS using what you have learned. Look over
the statement and correct any other errors (if you have made any). Then press

ENTER.

PRINT “I AM LEARNING TO CORRECT ERRORS" (press ENIER)
I AM LEARNING TO CORRECT ERRORS

Page 18

0R&65P TI-929/2 BOOK ¢ UHDIL 100 Beginners

\Using the Comma ¢(,), Semicolon (3}, and Colon (%) as PRINT separators

A single PRINT statement can be used to print two or more items. By using the
comma, semicolony or colan, you can control the way the computer displays
these items. Try these examples.

CAL.L. CLEAR
Ae=8
AL.PHA=10
PRINT A2,ALPHA
8 10

Nows try these:

AL=6

AL BERT=8
PRINT ALSALBERT
& 8

The computer divides the display screen into two horizontal zones. When you
use a comma () between two (or more) variables in a print statement, you are
‘telling the computer to print the values in different zones. On the other
hand, the semicolon (§) instructs the computer to print the numbers close
together.

Now try this example, using the colon ().
PRINT AL:ALBERT
6
8

The colon has the computer print each itew on separate lines.

Page 19

ORAGP T1-99/2 Book F broil tar Beginners

Now try an example that uses character strings.

N$="JACK SPRAT"

PRINT N$

JACK SPRAT

WE=" ATE NO FAT." (Note the one space at the beginning of
PRINT W$ this string to prevent its running on with
ATE NO FAT. * the previous word.)

PRINT N&;uW$ (Computer prints the two strings close
JACK SPRAT ATE NO FAT. together on one line.)

Now print the two strings again using firgt the comma (,) and then the colon
(*) as print separators to see the differences: -

PRINT N%,W$
JACK SPRAT ATE NO FAT.

PRINT N$:W$
JACK SPRAT
ATE NO FAT

Page 20

WCoOr 1L Yrs DU R ew kP ke 0 b R i e

Using the NEW Comnand

The words "command" and "statement" are sometimes used interchangeably.
Generally, commands are used in the Immediate Mode (sometimes called the
Command Mode, without line numbers) and statements are usad in programs (with
line numbers; this is covered a bit later).

The NEW command produces visible results similar to those of the CALL CLEAR
statement in that both clear the screen. An important difference, however, 15
that the NEW command also clears the computer's memory. When you use the NEW
command, any infarmation you have entered 1s erased. This should be done when
you begin a new activity (in the Immediate Mode) or a new program, so that old
information that the computer may be storing (such as the value assigned to a
variable) does not interfere with what you are about to do.

- On the previous page You assigned and printed several numeric and siring
variables. These values are still stored in the computer's memory. (If you
are beginning a new session with the computer, enter these statements again.!

They ares;

A2=8
AL PHA=10
AL =6
ALBERT=8

N$="JACK SPRQT"
W$=" ATE NO HAT."

If you clear the screen with a cALL CLEAR command, you can still print the
values of these variables, as you did in the section on the CALL CLEAR

command. Try 1t:

CALL CLEARR
PRINT ALPHAAZ;NS
10 8 JACK SPRAT

Page 21

CALL CLERR
PRINT ALBERT:AL:W$
8

5
ATE NO FAT.

W command, however, these values are erased from nemory and

The NEW command has the same effect an the computer's
Enter the

1f you enter the NE

cannot be printed.
memory as turning the computer off and then back on again.

followings:

NEW
PRINT ALPHA

0

)

PRINT N$

e of a numeric variable, a zero is displayed. If you

If you print the valu
a blank line is displayed, because the

print the value of a string variable,
string is empty.

Page 22

Yelbolrh L T s L GUUR e DRl 1wl Leygdiiik i o

Computer Graphics——Positioning Characters with CALL VUCHAR and CALL HCHAR

One of the most exciting things you can do with your cowmputer is to create
graphic designs right on the screen. With your computer’'s graphic capability,
you can make a design, draw a picture, create a gameboard, and 30 on.

This section introduces you to two simple yet powerful graphics statements.
CALL VCHAR and CALL HCHAR are used to position a character or draw a line of
characters on the screen. Later in this book, we'll show you how to use
graphics statements 1n programs.

The Basic Cnmputer 99/2 uses 28 printing pasitions on each line. For
graphics, howevers the computer allows 32 character positions on each line.
Think of the screen as a “grid" of square blocks wmade of 32 columns and 24

FOWS .

ILLUSTRATION (grid with 32 columns and 24 rows)

Page 23

Each square on the grid is identified by two value: called gpordinates-—-a row
number and a column number. For example, the coordinates 5,7 mean the fifth

row and the seventh column, and the coordinates 10,11 mean the tenth row and

the eleventh calumn.

The first thing to try is to place a character in a particular square on the
screen. fFor the time being, consider that 3 character is one of the 24
letters of the alphabet, the numbers O through 9, and certain other symbols,

such as the asterisk (#*), the plus and minus signs (4 and -), and the slash
(/). {Later you will learn about other characters available for graphics.)
Each character is assigned an identifying numeric value of its own. The
values for the full character set are given in Appendix XX in Book 4.

By using either CALL VCHAR or CALL HCHAR, naming the two coordinates (row and
column), and identifying a character by its numeric value, you can place the
character in any spot you choose. Here's the form used for these two

statements.

CALL YCHAR(12,17,42) (row 12, calumn 17, character number 42-—the
asterisk)

Try this example, and you'll see an asterisk (*) appear near the center of the
screen.

Try a few more examples. First, clear the screen by typing CALL CLEAR and
pressing ENJER. Type the following.

CALL VCHAR(15,10,67) (row 15, column 10, character number &7--C)

Don't forget the parentheses in the .statement-—they are impartant! Now try
the CALL HCHAR statenent. ')

CALL HCHRR(146,10,87) {(row 16, column 10, character number &4/--C)
The order for entering the row number, the column number;ﬂand the character's

numeric value is the same for both CALL VCHAR and CALL HCHAR, and they do the
same thing when ypu are positioning a sipale character on the screen.

Page 24

Ocedl 11-99Y7¢ Book £ BRDIL tgr Beginners

Using the Repetition Feature of CALL HCHAR and CALL VCHAR

When you try to draw a line of charactersy you find that there is a distinct
difference between the functions of the statements, CALL HCHAR and CALL
YCHAR. CRLL VCHAR causes a vertical column of characters to appear, whereas
CALL HCHAR displays a horizontal row of characters. To display a line with
either statement, you add a fourth numeric value to the statement: the number
of repetitions you want. This number controls the "length" of the line.

Clear the screeniby typing CALL CLEAR and pressing ENIER, and try a vertical
line. Type this:

CARLL UCHﬁR(li,IO;Bé,B) {row 11, cnluﬁn 10, character number 86--V, 8
~ repetitions)

Check for errors and then press ENIER. The screen looks like thist

CALL VCHAR(11,10,86,8)

CCCCCCTCCC

As mentioned earlier, there are 24 horizontal rows of character blocks on.the
"grid"® of the screen. Therefore, you can only draw a vertical line (column)
that is 24 characters long. What happens if you enter a repeat value greater

than 247

Page 25

T " i - -
Vil 1L Yo WWUR ew by Libe Wil kb ke

Clear the screen and then type the following.
CALL VCHARC1,10,86,50)
When you press ENIERs the screen shows the following display.

WY

SEEEEsEEEEEE2

CALL. VCWR{(1,10,86,50)

' §

(Note: You don't actually see all §0 of the V's above because there iz a blank
line after the CALL VCHAR command.)

Page 26

ViZoery 1L Yyi DOUK foa Ditwsdic il brlsgaaiinite &

Type

CALL CLEARR
CALL HCHAR(17,1,72,50)

and you see

CALL HCHAR(17,1,72,50)

HHHHHHHHHHNHARHHHHHHHHHHHEHHHHHN
HHHHHHHHHHHHHHHHHH

So fars you have entered actual numeric values in your statements. However,
you can assign numeric values to variables and then use the variahlee in the

"CALL VCHAR and CALL HCHAR statewents. Try this:

ROW=5

COLUMN=12

CHARCODE=&7

CALL CLEAR

CALL VCHAR(ROW, COLUMN,CHARCODE)

thre did the “C® appear on the screen?

For a big finale, fill the screen with asterisks (numeric code 42). Type
these lines, pressing ENIER at the end of each line.

CALL CLEAR
CALL HCHAR(1,1,42,768)

Continue to experinent on your owny trying different characters (see Appendix
XX) and positions. For example, can you fill the screen with your first-name

initial®?

Page 2/

1. A variable 1is
A. a mistake that is made repeatedly.

B a statement used. 1n the Immed: ‘e Mode.
. a word or letter that is assig d A& particular value.
D. a value that always remains the same.

_____2. The difference between numeritc variables and string variables is that
A. one is for serious prograwming and ane is just for fun.

B. string variables are always longer.
C. numbers are assigned to numeric variables and characters are

| assigned to string variables.
{ D. numerals are assigned ta numeric variables and numbers are assigned

to string variables.

3. The difference batween NEW and CALL CLEAR is -
A. that NEW only clears the screen and CALL CLEAR clears the
compu ter's menory.

8. not important.

C. impossible to axplain.
D. that CALL CLERR only clears th> screen and NEW both clears the

screen and erases the computer's memory.

4. Which of the following are valid ways to correct grrors?
Q. Backspace with LEEL ARROW and type over the error.
8. Use DEL (ECIN 1) to delete incorrect characters.
C. Use INS (ECIN 2) tO insert correct characters.

0. Press ERASE (ECIN 2) and type the lipe again.
E. A1l of the above.

6. Match each type of punctuation with the resulting display (when the
particular punctuation 1s used between two items in a PRINT statement).
A. comma) X, items printed close toge ther

B. semicolon (3 Y. items on separate lines
7. each item is in a different print zone

i el e S

5. The numbers within the parentheses after a CALL HCHAR or CALL VCHAR
command specify (in the correct aorder}s
"A. (row, column, character-codes number of repetitions)
8. (character-codey number of repetitions, rouW, column)
C. (column, rous character-code, number of repetitions)
- D. (aumber of repetitions, rou, column, character—code)

e

. | (Onswers are on page XX. If you wmiss a questions, go Back to the appropriate
? section and review the information before you oroceed to the next section.)

Page &8

Qb LYY, 2 Book i Babiu TOr bBeglnners

Simple Programming--Line Numbers

So far you have been entering single instructions and the computer has

performed them immediately. A computer grqacam is simply a list of these
instructions that the computer performs in a certain order. A program is

dif ferent because the computer waits until you have entered all your
instructions and does not perform them until]l you tell it toe. Thus you can
enter the program, correct errors, and revise or edit as much as you want
until you are ready for the computer to perform the program. Then it performs
the instructions in rapid succession.

How does the computer know that the instruction that you enter is not to be
performed immediately? This is done by putting line oumbers in front of the
instructions to show that each instruction is Jjust one in a series,.

In a computer programy, each statement begins with a line number, which serves
two important functions:

1. It tells the computer not to perform the statement immediately, but
to store it in memory when you press ENIER.

C. It establishes the order in which the statements are to be performed
in the program.

Let‘s begin by using an old familiar friend, the PRINT statement, in a
program. First type the word NEW and press ENJER. Now type the following
program, pressing ENIER at the end of each program lines

10 PRINT "ARE YOU READY" (ane space after each line number
20 PRINT "TO LEARN BASIC~?" is required) .
30 END -

Page 29

O0266F T1-99.2 Buuow s pHblL tar Beginners

(As you type the programy notice the small "prompting” character that appears
just to the left of the printing area. This symbol marks the beginning of
pach program line you type,)

In computer terminology, you have just “entered" a program. Nathing to it!
Check the program now to see if there are any typing mistakes. If there ares
just retype the line correctly, including the number at the beginning af the
line, right there at the bottom of the screen. Then press ENIER. The
computer automatically replaces the old line with the newy correct one.

Alse, you may be wondering why we numbered the lines in increments of ten (10,
20, 30, etc.}). Well, we could just as easily have numbered them 1, &, 3. By
using increments of ten, however, or other spreads like 100, 200, 300, etc.,

we can g0 back and insert new lines if we want to expand the existing pragram,
and we don't have to retype the whole program! (We'll cover this clever trick

whéen we discuss editing a program.)

When you're ready to see the program in actiony type CALL CLEAR and press
ENIER. The screen is cleared, but your program is not erased--it's stored in
the computer's memory!

Page 30

0266P Ti--99/2 Book &2: BALIL far Beginners

sing the RUN Command

The RUN command is the command that tells the computer to perform the list
instructions you have given it. This is called running & program.

With the program you entered on the previous page still in the computer's
memory, we are now ready to RUN it., Type RUN and press ENIER again.

RUN

ARE YOU RERDY
TO LEARN BARSIC™
¥% DONE %%

Want to "run® the program again? Type RUN again and press ENIER.

RUN
ARE YOU RERDY
TO LEARN BRSIC?

Wt DONE *¥
RUN
ARE YOU READY

. TO LEARN BASIC?
#% DONE **

Fach time you type RUN and press ENIERs the computer begins at the first
=tatement and follows your instructions in order until it reaches the last

statement. END means just what it says: the end, stop!

Page 31

of

066P T1-99,¢ Book @i BRLIL for Beguiiners

Using the LIST Command to Review Your Program

The LIST command tells the computer to diseplay, in the correct order according
to line numbers, the current program 1n memdry.

Now that vyou've had a bit of programming experience, let's review some of the
things you did when you entered the previauzs program. To refresh yaur memorys

we'll get the program back on the screen.

First, type CALL CLEAR (without a line number) and press ENTER to clear the
screen. Now type LIST and press ENIER againg

LIST

10 PRINT “ARE YOU READY"
20 PRINT “TO LEARN BASIC?"
30 END

The program above consists of three statements or “lines.” Rs in the
Immediate Mode, vyou pressed ENIER when you finished typing each program line.
Pressing ENIER defines the end of the program line, just as the line number
identifies the beginning of the line. It is also the computer's cue to store
the line in it's memory. Pressing ENIER at the end of each program line 1s
essential-—without it, vour line will not be correctly stored by the camputer.

Now type NEW and then LIST. What happens?

NEW
LIST

* CAN'T DO THRT
You get the error message CAN'T DO THAT. You have .asked the computer to do

something impossible, since it can't LIST a program if it has been erased with
the NEW command.

Page 38_

o TR RN T e . T T EEERRRLTEREET T

J'S_.".Ji.,..*i | .L .|' R i..-."'u.]u Y e 'l P o % L [§ | P S I TN L U

How to Fdit a Program——Correcting Errors

You have already practiced correcting errors in instructions by backspacing
with LEEI OBRROW or by pressing EBPSE and beginning the instruction again. You
also practiced correcting errors with DELete and INSeri. These methods work

(if vyou have naot vet pressed ENIER) both in the Immediate Mode and when
entering program lines. If you have already pressed ENIER, there are several
other ways to edit a program line, one of which we mentioned when you entered

your first programn a few pages back. These are:

1. Retyping the line correctlyy including the line number, and pressing
ENTER again. The computer will replace the old line with the new
caorrect line in its memory.

Em'Using the EDIT command followed by the line number of the line uhich
vou wish to edit. (Or you can simply type the line number and then

press UP ARROW (ECIN E or SHIET £) or DOWN ARBOW (ECIN X or SHIEIL X).
The current line appearss, and you simply use the GERROW keys to position
the cursor over the error and correct the error by typing over it.

Editing by these methods often requires less typing.

Let's practice editing by using the above methods. Below is a program which

converts pounds to kilograme. Enter the program just as it is writtan (it has

some intentional errors in it).

© 10 K=600
20 P=2.2%J
30 PRINT H
40 END |

Change the number 4600 to 40 in line 10. Use the first method to correct this

line. Simply type the corrected line, press ENJERs and the computer replaces L

the old line in memory. Type

10 K=60

" and préss ENIER.

Page 33

Now to prove that the corrected line is in the computer's memory, claar the
screen (CALL CLEAR) and list the program (LIST). This is what you see.

10 K=60

20 P=2.2%J
30 PRINT H
40 END

The variable J should be changed to K in lipe 20. To fix thas, let's use the
cacond method we discussed: using the EDIT command. Enter

EDIT 20

Line 20 appears, with the cursor flashing over the variable P. Using RIGHI
ARBOW (SHIEI Q or ECIN R), position the cur w over the J and type a K over
it. Then press ENJER. MNow clear the screei. and LIST the program.

As you can see, the computer has the corrected version of line 20 in memory. .
Now what is the error in line 30? The variable H has not been assigned a
value. Actually, we want to PRINT the value of P. Type 30 and press UP GRRQUW

(ECIN £ or SHIEI E).

When line 30 appears, move the cursor to th. H at the end of the statement,
type a P over the Hy, and press ENIER. *

Now if you like, you can list the program once more to see the whole progran
corrected.

10 K=460

cO P=2.2%{

30 PRINT P .
40 END |

Let's study what this program does. We szaid it converts kilograms t0o pounds
(1 kilogram = 2.2 pounds). We've used the variables K (for kilograms) and P
(for pounds) to help us remember which value is which, ind we began our

- program by assigning values to these variables.

In this case, we are trying to find out how many pounds are equal to 60
kilograms, so we have defined K as &0. Notice that we have defined P as

2.2 X K. If we stopped here and ran the program at this point, the computer
wauld perform the conversion, but it wouldn't show us the answer'! So we added

the PRINT statement.

Now RUN the program. What is the answer?

Page 34

W T3 T 'Y S N G R T T) L LY W1 o T I N g) | WL TN Y O Y L

Adding Prngram | ines

 What you have just done is called “editing" a program. The ability to edit or

changa a program without retyping the whole thing is one you'll come to value
highly as your programming skills grow. To give you an idea of the great
flexibility editing adds to programming, let's experiment with a few more
changes in the present program.

We mentioned earlier that the reason we number program lines in increments of
10 (instead of 1, 2, 3, etc.) is to allow program lines to be added without
having to retype the whole program. Before we experiment with a few examples,
let's clear the screen and recall aur program. Type CALL CLEAR, then LIST

IS8T

10 K=60

20 P=2.2*K
30 PRINT P
40 END

We might want to add a CALL CLEAR statement to the program, 30 that we won't
have to keep clearing the screen from the keyboard each time we Yrun" the

program. lype.

5 CALL CLEAR !‘

Page 35

YOl ' T

L. ld-Jid b [N - P U W " | S w PR -

Now LIST the program again to see the new line (type LIST and press ENIER) .

The old
program

The new
ProOgram

LIST

10 K=60

20 P=2.2%K
30 PRINT P
40 END

S CALL CLEAR
LIST

5 CALL CLEAR
10 K240

20 P=2.2%K
30 PRINT P
40 END

Compare the two programs on the screen, and notice that the computer has

automatically placed the new line in its proper order. Run the program again
to see the effect of the added line.

Now let's add another line that helps to point out our answer, Type

27 PRINT “THE RANSWER IS:*

and press ENIER. When you run the program again, you'll see thiss

THE ANSWER IS:
132

#¢ DONE **

Page 36

(P YRNSTW]| i L 774 LI T I TR TV 10 o TP N L I I (L 3T I I A ey

Removing Program Lines

Guite aoften it's necessary to remove a line gr lines from a program. Deleting
a program line is a very simple procedure.

The erogram we have stored right now doesn't really have any lines we want to
delete. Just for practices, however, let's remove line b.

First, clear the screen and list the program as it is now. Line § is the
first line of the programy, a CALL CLEAR statement. To remove it, simply type
S and press ENIER. Then LIST the program agsain. Presto! Line $ is gone!

LIST
Dld , 5 CALL CLEAR
program 10 K=40
20 P=g.2%K
27 PRINT "THE ANSWER IS:"
30 PRINT P
40 END

5 (Here's where we deleted line 5.)
LIST

.New 10 K=40

Program 20 P=2.2%K
27 PRINT “THE ANSWER IS:”
30 PRINT P |
40 END

That's all fthere is to it. To remove a liney type the line number and press
ENYER. The computer then deletes the line from program memory.

Since we really need line 5 in this programy let's reenter it. Type

5 CALL CLEAR

~and press ENIER.

Page 37

A e - ey e

- - " ——— e T -y

uesol 11 -9vY.,2 Book s bHLiL Or Beglnners

Using the INPUT Statewment with a Numeric Variable

The INPUT statement tells the computer to stop the program in progress and
wait for input from the keyboard. The value you enter 1s then assigned to the

variable contained in the INPUT statement. Thus, the INPUT statement, like
the LET statement, is a way of assigning values to variables.

I1f you want a value for a variable to be different each time a program 1s runy
the INPUT statement is better than the LET statement because the program
itself does not have to be changed. .

In the conversion program we have been working with, you can easily change the
value of K simply by retyping line 10 to assign a new value. (Remember that
the wobrd LET is not necessary when assigning a value to a variable.) Try it

by typing
10 K=40

Then run the program. The answer you get is the number of pounds equivalent

to 40 kilograms. But suppose you had many values for K, and you wanted to
find the equivalent value of P for each ane. It would become rather tiresome

‘to retype line 10 each time.

an INPUT statement causes the computer to display a question mark and staopy
waiting for you to type in a value and press ENIER. The value you enter is
then assigned to the variable contained in the INPUT statement. For exampley

type
10 INPUT K '

and press ENIER. Now run the program again.

The queatiﬁn mark and cursor show you that the computer is waiting for you to
“input® a value for K. This time we'll let K=70, saq type 70 and prass ENIER.

The computer prints your ansser:

270 -
THE ANSWER IS:
154

% DONE #%

Page 38

o b bt B | | -8 PR RN e e PR b=t b = - v e . - o, =

Now you can run the program as many times as you like, changing the value of K
aach time the computer prints a question mark and stops. Try the program
several times with different values for K.

The INPUT statement can also be used to print a “"prompting" message (instead
of simply a gquestion mark) that heleps you remember what value the computer 1s

asking for. Change line 10 again by typing

10 INPUT "KILOGRAMS?":K

and pressing ENIER. MNow run the program again. Firet the program asks.

KLLOGRAMS?

Llet's let K=50 this time. Type 50 and press ENIER.

KILOGRAMS?S0
THE ANSWER IS
110

#% DONE %

8y now, your program looks like thiss

5 CALL CLEAR

10 INPUT “"KILOGRAMS?":
20 P=2.2%K
27 PRINT "THE ANSWER IS:"
30 PRINT P
40 END

" If you'd likes you can list it on the screen at this time and review the

changes you've made so far. When you're ready, we'll go on to look at one
more change.

Page 39

JSAHP 1L L o2 BUDK s Oriode 1wl Deyl e a

Using the IMNPUT Statement with a String Variable

Let's make your conversion program a little more personal bf using a string
variable. Type thesae two lines:

8 INPUT "NAME, PLEASE?":B$
26 PRINT "OK, “;B$

(Clear the screen and list the program again so you can see how the new lines
fit in.) |

When you run the program this time, the tun INPUT statements will stop the
program twice:

The computer asks: You type 1in:

NOME, PLEASE? Your name and then press ENIER.

KILOGRAMS? The number of kilograms and then press
ENIER. |

Let's try it. Type RUN and press ENIER.
NAME, PLEASE?
Ue‘il type in HARRY (that's a nice name’ and press ENIER. Then we'll see

NAME, PLEASE?HARRY
KILOGRAMS™?

Again let's type 70 for the number of kilngrams; Press ENIER again and Ydﬁ‘ll- |

sSee,

NAME » PLEASE?HARRY
© KILOGRAMS?70
'f“UKIﬁHRRRY .

THE ANSWER IS:

154

%% DONE *#

Page 40

.Tif-*v .

O066HP 11-YY/2 Book . bBebil Tuir beglniners -

Using the GO TO Statement--Endless Loops--The BREAK Key

So far in your programming studies, you have seen that the compu tar performs
the instructions in a program in the exact order that they are listed ,
(according to line numbers). When the computer finishes the last instruction
in a program, it stops. There are ways to change this order or make the
computer repeat a series of lines over and over. One of the statements that
allows you to do this is the GO TO statement. (GO T0 can be typed as GOTO in
a erogram. The computer accepts it either way).

The G0 TO statement tells the computer to do e:actly'uhat it says: go to a
different line than the one the computer would normally perforw next (the next
line in succession).

So far, you've been developing programs that operate from beginning to end in
a straight sequential order. There are many situations, however, in which you

" Want to interrupt this orderly flow of operation. Look at the following

programs but don't enter it vet:

10 CALL CLERAR

20 INPUT K

JO PRINT K

40 PRINTZI:csccszes
50 K=K+1

&G 60 T0 3¢

Here we "send” the program back to line 30 by using a GO TO statement in line
60. The GO TO statement causes the actions performed Dy lines 30, 40, and 50
to be repeated over and over again, setting up what's called a log.

Notice that we don'‘t use an END statement. That's because the program néver
gets beyond line 60! (The END statement isn't necessary in BASIC anyway.)
The computer won't stop until you tell it to by pressing BREAK (the key at the
lower—~left-hand corner of the keyboard. You can get the same result with
CLEQR {ECIN 41). This is called an "endléss loop."

Page 41

Let's enter the program now. First, type NEW and press ENJER to erase the
computer's memoryy and then type these lines:

10 CALL CLEAR

20 INPUT K

30 PRINT K

40 PRINT:s2szacsss

50 K=K+1

60 GO TO 30

Before you run the programs we'll examine a diagram called a flowchart,
explaining how the program works. |

Program Line Operation
| 10 CALL CLEAR Clears the screen
20 INPUT K 'Stops and waits for initial value
of K
30 PRINT K Pfinta the current

value of K

40 PRINT:::::::f:: Prints nothings just gives
you 10 blank lines

50 K=K+t Reassigns a new value to K
(the old value +1)

40 GG TO 30 Transfers the program
back to line 30
Now run the programs putting in 1 for the beginning value of K. MWatch how
quickly the computer counts--almost too fast to follow! That's why we added
line 40~-to display some blank lines. This line puts ten blank lines in
hetween the numbers (with ten colons) so that you can see the numbers better.

Let the computer count as long as you want to. When you are ready to stop the
program, press BREAK. You'll see %BREAKPOINT AT lipe-oumber on the screens
indicating where the program stopped. Run the program as many times as you
want, using whatever number you wish as the initial value for K (30, 100, 500,

etc.).

Page 42

0266 TI-99/¢d Book i BALIC for Beginners

More Practice with the GOTO Statement

If you try to send the program to a non—existent line number, however, you'll
get an error nessage.

(From here on we'll use GOTO instead of GO TO, since the computer accepts 1t
elther way.) Supposey for example, we type 1n

60 6GOTO 25

and press ENIER. Try ity run the programy and see what happens! You'll see
this error nessage.:

¥ BAD LINE NUMBER IN 40
" So correct the line by typing and entering
60 GOTO 30

and run the program agaln.

Can we change the program to make it count by 2's, or 5's? You bet we can!
'8y making one program change, let‘s make the computer count by 2's. Type

. 50 K=K{2

and press ENIER. Nnu run the program, typing in 2 when the computer asks for
the starting value of K.

Experiment with the program for a while, making it count by 3'sy B'sy 10's,
atc.

Page 43

Using the FOR~NEXT Loop

The FOR-NEXT loop is a way to make the computer repeat a seﬁi9$ of program
lines a specified number of times and then continue with the rest of ‘the
PrOgram,

Earlier we presented several examples of the GOTO loops which repeats a set of
statements indefinitely-—or until vou press BREAK to stop the progrsm. The
FOR and NEXT statements also create a loopy but they are different -rom GOTO
in two important ways:

1. The FOR and NEXT statements are twg lines in the programy the FOR line and
the NEXT line, each with its own line number.

2. You control the number of times the loop is performed. After the loop has
been “executed® the number of times you specify, the program maves on to
the line that follows the NEXT line.

The FOR lir:~ has the form
30 FOR A=1 TO 3

The NEXT line could be
TBO NEXT R

These two lines cause the portion of the program between the FOR and NEXT
lines to be performed three times. In this example, the starting value of A
is 13 after each pass through the loop, R is increased by 1. Its value is
then tested against the upper limit (3, in this example). After the third

pass through the loop, A is equal to 4, so the program "exits" (or leaves) the -

loop to the line following the NEXT line, which is line 80.

Page 44

02464P TI-99/2 Book J: BALIL for Beainners

To help you see the differences between GOTO and FOR NEXT more clearly, let's
compare two similar programs, one with a GOTO loop and one with a FOR-NEXT

loop.
A GOTO Loop
Type NEW, press ENIER, and then enter this program:

10 CALL CLEAR
20 A=l

30 PRINT "A="3;A
40 A=Rt1
50:60TC 30

Before you run the program, think for a few minutes about what it will do,
First, the initial value of the variable A will be set to 1. Then the
computer will print out the current value of A. Fipally, the value of A will
be increased by 1, and the program will loap back to line 30. It will go on
with this procedure until you press BREBK.

Ready to run the program? Type RUN and press ENIGR to see it in action. When
you're ready to stop it, press BREAK.

A FOR-NEXT Loop

Now let's examine a similar “counting" program with a FOR-NEXT loop. Type NEW
and press ENIER to erase the first program. Then type these lines:

10 CALL CLEAR]
20 FOR A=1 TO 5

30 PRINT “"A="3iA

40 NEXT A

50 PRINT "“QUT OF LOCP"®

60 PRINT "A="3;A.

Page 45

0246F TI-99/2 Book di BASIC for Beginners

Think about the way this program will be performed. The value of A will start -
at 1 and will be increased by 1 eact time th. erogram cowpletes line 40. As
soan as the value of A is greater than 5, the prooram will exit the leop and
cantinue with lin2 50. If we listed the lines in their ocrder of performance,

along with the increasing values of A this 15 what we would have;

Line Number Value of R
10 0
20 1
30 |
40 2
30 2
40 3
30 3
40 q
30 q
40 8
30 5
40 6
50 &
&0 b
Run the program, and the screen should look like this: ~

A= 1

A= 2

A=z 3

A= 4

=5

OUT OF LDOP

A= &

%% DONE

Page 46

Orbal 11-9v./¢ Book v BRLLIL tu dbeginbers

The following flowcharts illustrate the differences in the two programs.

GOI0 Proscam | EQR=NEXT Prgaram.
Clear screen. Clear screen.
Set initial value of A. Set the "parameters® for A:

beginning and ending values.

Print “A=" and current |

value of A. | Print "A=" and current
value of A.

Increase A by 1.

Loop back to line 30. Increase A by 15 check to see if
the new value for A exceeds the
upper limit set by line 20.

(i.oop continues until you If the answer is “no," repeat
stop the program by lines 30 and 40. If “"yes," break
pressing BRERK.) out of loop.

Print “Out of Loop."

Print "A=* and current
value aof A.

Stop program run.

- el il e S - nbil VR S - - — il S -l S P e k- il - - il P - S Yl S - S S S el i S rmpe————y s R Y P L P L Mgkl - il W lick = Sy - N S PP A - — -

We can use the FOR and NEXT statements to build a controlled time delay into a
program. Consider this example: |

20 FOR A=1 TO 1000
30 NEXT A

Better still, let's try it! Type NEW, press ENIERs and then type in the
following program: ' -

10 CALL CLEARR
20 FOR A=1 TO 1000
30 NEXT A

Now run the program. What happens on the screen? Not much, really. The
cursor disappears. After a short time delay (while the computer “counts” from
“1 tg 1000), the cursor reappears and the program ends: '

#% DONE *%
Although no other lines are being axecuted between the FOR and NEXT lines,

time passes while the computer counts the number of loops, in this example
from 1 to 1000. T

Page 4/

S RSN TR RS T —— S

0R6eP TI-99/2 Book ¢: BRSIL tor Beginners

Nested FOR--NEXT looes

It is possible for us to use more than one FOR-NEXT loop-—~one inside
another--in a program. We call these pested loops.

Now let's examine a srogram with nested FOR-NEXT loops. The following program
displays sixty—-four of the alphanumeric characters, codes 32 through 5. (See
Appendix XX for a list of the character codes.) Enter these lines:

NEW
10 CALL CLEAR

20 CHAR=32

30 FOR ROW=7 TO 14

40’ FOR COLUMN=13 TO 20

S0 CALL HCHAR(ROW,COLUMN,CHA
R)

60 CHAR=CHAR}1

70 NEXT COLUMN

80 NEXT ROM

There are several things we'd like to point out about this program. first,

FOR-NEXT loops do not have to start counting at 1. They can begin with

whatever numeric value you need to use. Second, the nested loop (FOR
COLUMN-NEXT COLUMNY is not just a time—delay loop. It actually controls a
part of the program repetition.

Finally, linme 50 is called a wrap-around line. It has wmore than 26
charactersy so part of it prints on another line on the screen., This is an
important point! program lines can be more than one screen-line long. In
fact, a program line, in general, can be up to four screen lines (112
characters) in length. Notice that wrap-around lines (that is, the second,
third, or fourth screen lines of a erogram line) are not preceded by the small

prompting symbol.

Page 48

Run the programy and the sixty-four characters are printed in nices neat rows
on the screen.

!Iﬁmu
(I%f,=./
01234547
8905 <=?
GABCDEFG
HIJKLMND
PQRSTUVUW
XYZ[17°_

| | %% DONE *%
" Hi there Gary, you really shouldn’'t go off and leave me. I get lonely and start
talking to myself.

Hold on' There are anly sixty-three characters on the screen! What happened
to the other ane? Well, there are actually sixty-four. Look at the top line,
and notice that it appears to he indented aone space. That's because character
32 is a space. Even though a space doesn't print anything an the screen, it
does occupy room On a line, and it is a character as far as the computer 1is
concerned.

Page 49

0264F TI-99.2 Book 2: BWSIL for Beginneis

Errar Conditions with FOR-NEXT Loops

We mentiaoned earlier that a nested loop must be cowpletely containad within
another loop. Were vyour program to include lines like these,

20 FOR A=1 TO &
- 30 FOR X=5 T0 10

B0 NEXT A
0 NEXT X

the computer would stop the program and ive you this error message.

*CAN'T DO THAT IN 90

The computer can't go back inside the completed "A"™ loop to pick up the
bcginning of the *X" loop.

Another possible error condition with FOR and NEXT statements is the omission
of either the FOR line or the NEXT line. Far example, if you attempted to run
this program,

10 FOR A=1 TO §
20 PRINT A
30 END ﬁ'

the computer would respond with

¥FOR-NEXT ERROR

4y,

If you encounter an error message, just list the program (type LIST and press
ENIER), identify the errors and correct the praoblem line or lines.

Page 50

UCC}G‘T‘J Il],""*}""f:’ o LULIA L. a LAl ae &L P . e

T A -

Review

{. What in a program line tells the computer not to perform the line
immediately?

2. What are two ways to display an existing program line for editing?
3. What punctuaiion is missing from the following statement?
10 INPUT “LENGTH?" L
4. A GOTO statement often causes an “"endless loop" whereby a prograﬁ will not
stop hy itself. What are two ways to stop a program in progress from the

keyboard?

&. What is the term used to describe a FOR-NEXT loop within another FOR-NEXT
loop?

(Answers are on page XX. If you miss a question, 90 back to the appropriate
section and review the information before you proceed to the next section.’

Page 51

0R66P T1-9v2 Book ¢ BuolC ror Beqginners

More on PRINT Separators (y § o)

While using the PRINT statement in the Inmediate Mode, we saw that a
difference in spacina occurred when we used a comma, semicolon, or colon ta
saparate numeric values in a PRINT statement. Let's take another look at this.

Spacing with Commas

Try each of the following examples. (In each, we'll assume that the screen
hac been cleared by typing CALL CLEAR and pressing ENJER.?

PRINT 1,2

1 2
PRINT 1,2,3,4)54
1 2
3 a
5 6

So far we have used only small positive integers. Let's try some simple
negative numbers.

PRINT ~1,-2
-1 -2

Now let's try a combination of positive and negative numbers.

PRINT 1;21-3’"4
1 c
-3 ..4 ~

Note that the computer always leaves a space preceding the number for the sign
of the number. For positive numbers, the plus sign (4} is assumed and is not
printed on the screen. For negative numbers, the computer prints a minus sign
(=) before the number.

Ué mentioned eabiier in this book thaf there are two print zones on the screen
line. Each print zone has room for fourteen characters per line.

Print Zone 1 Print Zone 2
(spaces 1-14) (spaces 15-28)

v
When you use a comma to separate numeric values of variables in a PRINT
statement, the computer is instructed to print only ane value in each zone.
Therefore, since thére are only two print zones on each line, the computer can
print a maximum of two values per screen line. If the PRINT statement has
more than two items, the computer simply continues on the next line until all
the items have been printed.

Page 52

0c6aP T1-99/72 Book ¢ BASIC tor Beginners

Now let's try some examples with string variables, using commas as
- "gaparators."“

A$="Z0ONE 1"
B$="ZONE 2"

PRINT A$,B$
ZONE 1 ZONE ©2

The strings (the letters and numbers within the quotation warks) are printed
in different zones an the screen when a comma is used to separate the string
variables.

Try this example:
A$="0ONE "
B$="TWO"
Ce="THREE"
D$="FOUR"

- PRINT A%,8%,C$,08 | ﬁ
ONE TWO]

THREE FOUR

(Note that for strings, the computer does not leave a preceding space.)

Spacing with Semicolons
Now let's look at semicolon gpacing. Try these examples:

PRINT 132

Aha' The numbers are much closer together.

PRINT 13233
1 2 3

PRINT 1;3;25-35-94355-637
. 1 2-3-4 §-46 7
The semicolon instructs the computer not to leave any spaces between the
values or variables in the PRINT statement. Then why do we see spaces between
the numbers on the screen? Two reasons! First, remember that each number is
precaded by a space for its sign. Second, every number is followed by a
trailing space. The trailing space is there to guarantee a space between all

numbers, even negative ones.

Page 53

0264P TI1-99./2 Book 2: BASIL for Beginners

If the semicolon tells the computer to leave no spaces between variables in a
PRINT statement, what happens when we use ﬁtrlng variables rather than
numeric? Let's try some examples.

A$="HI THERE'"
B$="HOW ARE YOU?"

PRINT A$;3BS
HI THERE'HOW ARE YOQU?

The two strings are run together. If we want a space to appear batween them,
then, we must include the space inside one of the sets of quotation marks!

For example, let's change A$. Type

A$="HI THERE! "
PRINT A$;:8$

- HI THERE' HOW ARE YOU?

$pacin9 with Colons

There is a third “separator' that can be used: the colon. The colon instructs
the.computer to print the next item at the beginning of the next line. It
works the same way with both numeric and string variables. Enter these lines

As an example:

A=-5
B$="HELLO" .
CH="MY NAME IS ALPHA"
PRINT A:B$:C$
-5
HELLOD
nv NﬁHE IS ALPHA

Tn review for a mﬂment, then, thece are the three print separators we have
used.:

Punciuation mack Qeeration

Comma Prints values in different zones; marimum of
two items per line.

+

Semicolon Leaves no spaces bhetween items. (The spaces
that appsar between numbers are results af the
built-in display format for numeric
quantities.)

Colon —Prapts next item on following line.

Paga "

Ocb66l 11-9Y/2 Book <1 BRLHIUL for bBeginners

Understanding the Order of Arithmetic Operations

You've been introduced before to the arithmetic powers of your computer, but
1it's time now take a more detalled look of some of its mathematical
capabilities. Far example, what i1s the answer to this problem:

4+4¥%5="7 (Remember, * means "multiply" to the computer.)

Let's say, for example, that the answer represents an amount of money vyou owe
a friend. Your friend argues that you owe him $50, because

4+6=10! and
10x5=80

You, however, don't agree. You say vou only owe $34, because

4x5=30
4+30=34

th is right? Why not ask your computer?

Type PRINT 444%5
and press ENIEE.

The answer 1is 34. You win!
Order of Operations

There is a commonly accepted order in which arithmetic operations are
performed, and your computer performs calculations in that order. In any
problem involving addition, subtraction, multiplication, and divisiony the
aritimetic aoperations are completed in this way:

Miltiplications and divisions are performed
hefore additions and subtractions.

'Tﬁisﬁi;'the sethod your computer used to solve the previous example. It first
multiplied &%5 and then added the result to 4, giving you a final answer of
34. Now try this example: - -

PRINT 4+15/3%2-4

Before you press ENJER, let's think about the way the computer evaluates this
problem. Scanning the problem from left to right, the computer solves it in
"this order:

15/3=5

L¥*2=10

6+10=16

16-4=12 —~ o

Your anﬁueb} then, should be 12. Press ENIER nou,‘and see@ the result:t
PRINT &4t+15/3%2-4
ie

Page 55

0246P TI-99,/2 Book 2: BRSIL for Beginners

U131 Parentheses to Alter the Order of Operations

Supbaﬁe, however, that we want the computer to solve the last problem like
thiss

(1) Add 6 and 15.
(2) Divide the result by 3.

(3) Multiply that result by 2.
(4) Subtract 4, giving & final result of 10.

We can change the built—in computational order by using rarentheses. Try thist

PRINT (6+15)/3%2-4 Press ENIER.

The answer, 10y is displayed on the screen, because the computer has completed
the computation inside the parentheses first. So our new order of opergticns

becomes

(1) Complete everything inside parentheses, innermast first.
(2) Complete multiplication and division, in order from left to right.
(3) Complete addition and subtraction, in order from left to right.

Now try this example:
"PRINT g8/2%4/2

The answer is 8, because
8/2=4
q%4=14 _
146/2=8

But suppose we eﬁtered the problem with parenthesess like this:

PRINT 8/(2%4)/¢

Thié’fﬁﬁé, we get a result of .5y because the expression within the
parentheses has heen solved first:

2*4=8
8/8=1
1/2=.5 g

Hére'sla slightly harder problem to tirye

"

PRINT 274+10/2%100-30

If we enter the problem just like this, we obtain an answer of /744 bgcause

10/2=% —
5x100=500
274+500=774
774-30=744

Page 56

0266P TI-99/2 Book 2: BALHIC for Beginners

But by adding parentheses in different places we can get a variety of answers:

PRINT (274+10)/2%(100-30)
9940

PRINT (274+10)7(2%100)-30
-EB'I'SB

PRINT (274+10/2)%100-30
27870

Try thg following for practice:

PRINT 38%6-4

PRINT 38+6-4%2

PRINT (38+6~-4)%2

PRINT ((38+6-4)%2)/(442)

Rearrange the parentheses in the last problem. How is the answer affected?

T

Page 5/

0r&&6P T1-99-2 Book ¢! BRLIL for Begiuners

Understanding Scientific Naotation

So far, all the examples we've tried have given results in a normal decimal
display form. Howevery the computer displays very long numbers (more than ten
digits) in a special way. Try this program.

NEW

10 CALL CLEAR
20 A=1000

30 FOR X=1 TO §
40 PRINT A

50 A=A*100

60 NEXT X

When you run the program, the first four resulte are printed out 1in the normal
form. The last result, however, looks like thiss

1E+11

We call this special form scientific notation. It's just the con, .ter's ua?
of handling numbers that won't fit into the normal ten-digit space allotted
for numbers.

11
- 1E411 means 1X10 or 100,000,000,000

As you can seey iE411 represents a very large'number!

Page 58

Velodal L YYse DOOLY e bHDLIL TWT DEs L »

Using the INT function

The INT function gets its name from the word integer, meaning whole number,
one that has no fractional part. Integers include zero and all of the

positive and negative numbers that have no digits after the decimal point.

The best way to learn how the INT function works is by trying it. First,
let's work a division prablem that doesn't result in a whole mnumber answer.

Type
PRINT 146/3

and press ENTER. The answer is 5.333333333.
Now try this example:

PRINT INT(16/3)
5

INT kept the whole number part of the answer and threw away the digits after
the decimal point. Notice that the number or expression that the INT function
works on must be enclosed in parentheses. Try another example:

PRINT INT(7/6) (776=1.1666466666)
1 (INTeger of 7/6~1)

The answer is 1; all of the fractional part has been discarded.
How about a real-life problem? Let's say a salesclerk is giving $1.37 in

change to a customer. The customer wants as many quarters as possible. How
many quarters can be given? |

Page 59

. R il e

0c2héP TI-9v72 Book i bBuolil 10 geglnners

PRINT INT(1.37/.25)
The answer iz 5. Five quarters can be given.

More than one INT function can be used 1n a PRINT statement. Here's an
example:

PRINT INT(1/3)3INT(20/9)
o ¢

What would happen if you entered these values with the INT function: 8, 8.9%9,
8.347 Try them and see.

PRINT INT(8>
8

PRINT INT(8.99);INT(8.34)
B8 8

If you use INT with a whole number (integer), vou just get the same number
back. In the other two examples, no matter what digits are to the right of
the decimal point, the INT function "sruncates” or cuts off those digits--that

jg, it works this way for positive numbers. What hapeens with negative
numbers?®

Ne'll yse a program to explore INT and negative numbers. Enter these lines:

NEW

10 CALL CLEAR

20 FOR A=1 TO 7 | *
30 PRINT -A/3, INT(-A/3)

40 NEXT A

Page 60

B L

g TR T

O2&doP T1-99/2 BoOK oo BHLIL (0O beginners

Now RUN the program. The screen shows these results:

- 3333333333 ~1

~ 6666666666 -1
-1 -1
-1 .333333333 -2
-1.666666666 -2
-2 ~&
-2.,333333333 -3

So INT(X)-—~where X represents a number or a mathematical expression--computes
the nearest integer that is less than or equal to X. Perhaps looking at a
number line will help to explain.

L]

(number line graphic)

As you see from the number line, when X has the value -0.3, the nearest
integer that is less than or equal to X is -1.

One last feature associated with INT is very useful to know. It can appear on
the right side of an equals sign in an assigmment statement. For examples try

the next series of lines.

A=INT (4/3)+2
_ PRINT A
3

In the assigmment statement, INT(4/3) produces the integer result ufii. This
result is added to the constant 2, yielding 3 as a final result. A is then
assigned the value of 3 and printed.)

Try some other experiments with INT so that you become even more familiar with
how it works.

Page 61

Pl

Q66P TI-99,/2 Ban 2e: BASILC for Beginners

Using the RND Function and the RANDOMIZE Statement

The letters in the name RND are taken from the word RaNDom. Yo find out what
RND does, let's try a few examples in the Immediat: Mode.

Enter the NEW command, and then enter this line:

PRINT RND

Now try entering the line again. Here's an interesting situation! Every time
we use RND, we get a different number. That's exactly uwhat RND does—-—-1t
generates random numbers. |

Now let's try a program that produces ten random numbers. Enter these lines:

20 FOR LOOP=1 TO 10
30 PRINT RND
40 NEXT LOOP

When you've checked your program for errors, run it. R list of ten random
numbers is printed on the screen. Look at the numbers closely. Are any two

of the numbers identical®

You may have noticed that all the numbers generated by RND are less than one
(1.0} in value. Also, there are no negative numbers. RND is preset to
praoduce only numbers that are greater than or equal to zero and less than aone

(0Ln?l).

Page &2

kel T1-99/2 Book 2. BRALIL tor Beginners

Write down the numbers this program produced, and then run the program a
second time. Check your written list against the numbers on the screen thi
time. Very strange! The list of numbers is the same! -

This feature of the RND function is important to remember and can be very
useful in certain applications. Within a program, RND produces the same
sequence of random numbers each time the program 1is run.

UNLESS...'' Unless the BASIC statement RANDOMIZE is used in your program.
Add the RANDOMIZE statement shown below to the program that is still in your
conmpy ter.

10 RANDOMIZE

Clear the screen now (type CALL CLEAR; press ENIER), and list the changed
program on the screens |

LIST

10 RANDOMIZE

20 FOR LOOP=1 TO 10
30 PRINT RND

40 NEXT LOOP

Run the program again, and compare the new set of numbers with your written
1ict from the first program run. Are they different this time? They shou ld
be! Continue to experiment with the program until you feel comfortable with -
RND and RANDOMIZE. For example, try changing line 30 of the previous program
to-

30 PRINT RNDFRND | A
What result does this change have on the program?

If you want the program to generate more or fewer than ten random numbers,
just change line 20.

Page 463

0Rs&HP TI-99/28 Book i BASIL. ror Beginners

Other Random Number Ranges

The program you just completed generates random numbers betﬁéen Q0 and 1
(0<n<1). Now let's examine ways to increase the range of the numbers we
generate.

The RND function can be used as part of any legitimate computatian. For
exampley 10%RND and (10%RND)>47 are both valid uses of RND in BASIC. To show
what is produced when RND is used in this way, enter the following statement.

PRINT 10¥RND

What number appears an_the screen? Try the same statement again. What number
did vyou get this time?

In both these examplesy you should see a deciwal point followed by ten digits,
or one digit to the left of the decimal point, followed by nine digits to the
right of the decimal point. That's because 10¥RND produces random numbers in
the range of 0 to (but not including) 10. Try this:

PRINT 100%RNO

and see what is producexi. This time you could get one orf two digits to the
left of the decimal point, in the range from O through 99.99%....

Let‘s use a program to generate some random numbers in the ranges 0 to 10 and
0 to 100. Enter these lines:

NEW

10 RANDOMIZE

20 FOR LOOP=1 TO 5

30 PRINT 10%RND,100%RND
40 NEXT LOOP

Page &4

Qéeér 119972 Book 21 bHbIL ror Beginners

Now clear the screen and run the program. ARlthough the numbers you generate
on your screen are different, they look something like thiss

RUN

3.196128739 11.32761568

6.233532821 ?.502421843 .
7 .030941884 33.17351797

« 6689170795 846.40802154

?.388957913 75465322811
X% DONE %%

Study the differences between the numbers in the left print zone on the screen
and those in the right print zone. Can you see that the range is greater in
those on the right? Run the program again to produce other numbers.

Suppose we'd like to eliminate all digits to the right of the decimal point
and produce positive random whole numbers (integers). Remember the INT
function we discussed earlier? This is a job for INT!

‘Change the program by typing and entering this new line:
30 PRINT INTC(10%¥RND), INT(100%RND)

When you list the program now, it looks like this:

LISY

10 RANDOMIZE

20 FOR LOOP=1 TO 5

30 PRINT INT(10%RND), INT(100
%¥RND)

40 NEXT LOOP

Page 65

0266FP TI-99/2 Book ¢: BRLSIL tor Begiiewil s

When vyou run the program, the screen shows two series of random whole numbars
(the numbers you generate on your screen are different)s

RUN

? 51
0 14
6 77
5 ?
1 21
K% DONE #%*

All the numbers on the left side of the screen have values from O through 7,

whereas' the numbers on the right have values from O through 99. The INT
function throws away the digits to the right of the decimal point. The

following table summarizes what we have covered so far.

Pragram Instruction Range

RND 0 through .999%9...

10%RND | 0 through 92.999%9...
INT(1O¥RND) 0 through 9 (integers only)
100%RND -0 through 99.999%...
INT(100%RND) 0 through 99 (integers only)

Notice that all these ranges begin with the value of zero. In many games and
simulations, however, we need random numb~rs that start at some other value.
For example, to simulate the throw of one die you need a random number
generator that produces values from 1 to 6. You have seen thet INT(10%RND) .
gives values from 0 to 9. What does INT(&¥RND) produce? Change line 30 an

the program to PRINT INT(4¥RND) and run the new program.

Page 56

0e6sP TI-99/2 Book 2: BASIC for Beginners

Type:

30 PRINT INT(&%RND)
CALL CLEAR
RUN

W o -5

% DONE ##

Your screen shows a list of five random numbers ranging from O to 5. What
happens if we added the value 1 to each item in this list? The resulting
numbers range from 1 to 4. That's just what we need to simulate the throw of
a single die. Againy alter the program as shoun below and run it.

Type:

30 PRINT INT(&%RND)+1
CALL CLEAR
RUN

#% DONE *»

That does it' The program now in your computer is a simulation (imitation) of
throwing a single die five times.

Page &/

02646P TI~99/2 Baok 2: BuSIL for Beginners

A Two-Dice Simulation

At this point we can easily design a program to simulate the thraows of two
six-sided dice. Before you start, erase the old program by typing MNEW. Then
enter the following program:

5 CALL CLEARR

10 RANDOMIZE

20 INPUT “"NUMBER OF ROLLS?"IN
30 FOR ROLL=1 TO N

40 DIEL1=INT(&%¥RND)+1

S0 DIER=INT(4%RND)+1

60 PRINT DIE1;DIE2,DIE1{DIER

- 70 NEXT ROLL

80 PRINT
90 GOTO 20

This program prints out the number of “spote™ on each die and the sum of the
spots on both dice faces. You are asked how many rolls you wish to make at
the start of the program. Run the program now and watch what happens.

First, the program prints a request for the number of rolls to make. Enter a
number (5, for example) and press the ENTER kevy.

NUMBER OF ﬂoLLS'?s

2 5 1 7

5 & 12

31 4

2 3 5 1_
1 4 5

NUMBER OF ROLLS?

The program keeps looping back to the INPUT request line. (If you want to
stop the program, just press BREAK.)

Try entering different values for the number rolls. What happens i1f vou try
30 rolls? Then make some changes to the programy if you'd like to
experiment. For example, how would you alter the program to simulate the
throwing of three dice? Two eight-sided dice?

Page &8

PRI RIS b e L Eondiih e DHIQ AL, Ll REi3d vaii o

Error Conditions with RND

The error messages produced by an improper usage of RND are essentially the
same as the error nessages we've mentioned before. Here are some examples:

Typing Errors Error Message
10 PRINT INT{10RND) % TNCORRECY STATEMENT IN 10
10 PRINT INT(10¥#RND %% INCORRECT STATEMENT IN 10

About the only new error condition we need to mention occurs if you try to use
the letters RND as a numeric variable name in an assigmment statement. For
example, 1f you type

RND=5
" the computer responds with
¥INCORRECT STATEMENT

This occurs because RND is “"reserved,* to be used only as a function in
BARSIC. A list of all the reserved words is in Book 4.

Page 649

0286P TI-9%72 Book 2 BALIL for Begainners

Randomized Character Placement

The frnllowing program utilizes the INT and RND functions to benerate random
screen positions for a character you input. First, type NEW and press ENIER
to erase your old program; then enter these lines:

10 RANDOMIZE

20 INPUT "CHAR CODE?*:CODE

30 CALL. CLEAR

40 ROW=INT(24%RND)+1

50 COLUMN=INT(I2*RND)$1

40 CALL VCHAR(ROW,COLUMN,CODE)
70 GOTO 40

We'll use the character cades 33 through 953 because character 32 is a blank
space, we want to avoid entering it when the program asks for a code number.

Before running the program, look at the line—-by-line description helow.

Line 10 "Randomizes" the random number
series each time the program is run.

Line 20 Stops and asks "CHAR CODE?".
fissigns number you enter to the
variable CODE.

Line 30 Clears prompting message and input
character code from the screen.

Line 40 Produces random integer in range .
of 0 through 233 adds 1 to value
and assigns value to variable ROW.
Line S50 Produces random integer in range of
0 through 31; adds 1 to value and
- assigns value to variable COLUMN.

Line &0 Prints input character in random
position designated by lines 40 and 50.

Line'?O Loopes back to produce new random
position for character.

Page 70

ViZbol VLY UUR s Mt LU LM A

Now clear the screen with CALL CLEAR and run the program. For this first
example, enter 42 (the character code for the asterisk) as the input for CHAR
CODE. The screen looks something like this:

¥

% ¥*

To stop the program just press BREAK. Then try running the program several
times, putting in a different character code each time. OSee if any unusual
designs are produced.

When you've finished experimenting with different characters, let's change the
program to generate characters at random, as well as placing them randomly on
the screen. First we'll have to decide how to set the limits we want for the
character range., Here's a general procedure for setting the limits for use
with RND:

Subtract the lower limit from the ygeer limit.

Add 1.

Multiply that result by RND.

Find the integer (INT) of this result.
" Add the Jower limil.

Now we know that we want &3 characters, with character codes ranging from 33
through 96. So our lower limit is 33, and our upper limit is 95:

95-33=62
6211 =63

Page 71

o e o Lt b 4 PR b od e M [- . e g & e -

The number we want to multiply by RND is 63, and we must use the INT functiont

INT(63%RND)

Now check the limits established when we add our lower limit, 333
0+33=33 (lowest possible character code)
62433=95 (highest possible character code)

INTC62%RND)Y 433 gives us random whole numbers in the rénge we need. Type the
following new line:

20 CODE=INT (43%RND)+33

and press ENIER. Now clear the screen and LIST the program te review this
change.

LIST

10 RANDOMIZE

20 CODE=INT(&3%RND)+33

30 CALL CLEAR

40 ROW=INT(24%RND}+1

S0 COLUMN=INT (32%RND) 1

40 CALL VCHAR(ROW, COLUMN, COD
E)

70 GOTO 40

When we run the program this time, the cowmputer generates a random character
cade and then print the character in random pasitions on the screen. (Press
BREAK when you want to stop the program.) Run the program several times to
see different characters. | .

Experiment'--By making changes in two liness you can cause the previous

program to print different random characters each time 1t loops. Try 1it!
(Hint: Think about lines 30 and 70.)

Page /2

0R&6P TI-99/2 Book &: BRSIC for Beginners

Using the IF THEN Statement

The IF THEN statement causes the computer to make a decision about whether a
condition is true or false. If the condition is true, the program transfers
control to a different line (as in a GOTO statement). If the condition 1s
false, the program proceeds with the next sequential statewent.

All the programs we've considered so far in this book have been constructed so
that they either run straight through or loop using a GOTO or a FOR-NEXT

loop. The IF THEN statement provides you with the capability of wmaking
branches or "forks" in your program. A branch or fork is a point in a program
where either one of two paths can be taken, just like a fork in a road.

(TLLUSTRATION)®
TO: PRINT B

TO: A=5
The general form of an IF THEN staieuent looks like this-:

IF caondition THEN lipe pumber

The condition is a mathematical relationship between two BASIC expressions.
The line number is the program line to which you want the program to branch if
the condition is true. If the condition is not true, then the program line
following the IF THEN statement 1is executed. For exampley

30 IF K<10 THEN 70

The statement says: If the value of K is less than 10, then go to line
70 of the program. If K is greater than or equal

to 10, then do naot branch to line 70. Instead,
execute the line following line 39.

Page 73

Oree:P 1L oY/ BuLk i DHoLe Ty bueylnier 5

Let's try a demonstration program. (Pre.> the comma key in conjuncition with
either SHIEI or ECIN to enter the < sign.) Enter these lines:

NEW

10 CALL CLEAR
20 K=1

30 PRINT "K=“;K
40 K=K+1

50 IF K<10 THEN 30
40 PRINT "QUT OF LOOP"

Now run the proaram.

= 1

= 2

= 3

= 4

=5

= 4

=7

= g

= 9

OUT OF LOOP
¥ DONE %%

fach time the program reaches line 50, it must make a "true or false®
decision. When K is less than 10, the IF condition (K<19Q) is true, and the
program branches to line 30. When K equal=s 10, houwever, K<{10 is false. The
program then executes line 60 and stops. -

e mentioned earlier that the condition is a mathematical relationship betueen
two expressions. In the example you've just seen, the mathematical
relationship was <y or “less than.” There are a total of six relationships
that can be used in the IF THEN statement:

Page 74

O266P T1-99/2 Book 2- BﬁSIC for Beginners

Mathematical BRSIC
Relationshig Symbol Symbol
Equal to = =
" Less than < {
Greater than > .
Less than or
equal to 5 =
Greater than
or equal to & o
Not equal to e £

Suppose we changed line 50 in the program to thiss

50

How is

IF K<=10 THEN 30

the program's performance be affected? Try it! Enter the new line;

and then run the program again.

Now the program prints the value of K all the way through 10, because the new
line says, "If K is less than or equal to 10, branch to line 30."

The IF

THEN statement can be a powerful tool in program development. Try this |

program for a graphics application:

“ - PEH

10
20
30
40
50
&0
70
80

CALL CLEAR

K=1

CALL HCHAR(K,Kt1,42)

K=K+1

IF K<25 THEN 30 | .
K=1

CALL. HCHAR(K,K$3,42)

K=K$1

90 IF K<25 THEN 70
100 GOTD 100

(Préss

BRERK to étop the pfugram.) c&n vou follow this pattern to create more

than two diagonal lines?

Page 75

026&HP TI -99./2 Baok ¢: BASIL v Beginners

Error Conditions with IF THEN

Like most BASIC statements, the IF THEN statement iz pretty particular about
itz form. The main errors that can aoccur in using the IF THEN statement are

shown below:

20
20
20

20

All of
during

of the

If the

IFA=8 THEN 200 (No space after IF)

IF A=BTHEN 200 (No space in front of THEN)
IF A==8 THEN 200 (Invalid relational symbol combinations)

IF A= THEN 200 (No expression on one side of the relatienal symbol)

the above conditions produce an error message either when entered or
the running of the srogram, along with a reference to the line number

statement in which the error occurs.

line number referenced in an IF THEN statement does not existy, the

program stops and produces a message saying that the line number referenced in
the statement is not found in the program. For example (using the line
above), if P00 is not a valid line number in your program, you see this error

message:

% BAD LINE NUMBER IN 20

Page 74

o

02466P TI-9972 Book 2: BRSIC for Beginners

Review

1. Which aritimetic operations are perforwmed first, multiplications and
divisions or additions and subtractions?

2. How can you change the normal order of arithmetic operations in a program
line?

3. What does the INT function do?
4. What is the difference between RND and RANDOMIZE?

. If the condition in an IF THEN statement is true, what happens?

What if the condition is false?

(Answers are on page XX. If you miss a question, 90 back to the aperopriate
section and review the information before you proceed to the next section.)

Page /7

O&darP 11-99/2 Book o. BRLIL tor degliiuwi a

Answers to Review an Page 2B

1. C. A variable is a word or letter that is assigned a particular value.

c. L. The difference hetween numeric variables and siring variabl=2g 1s that
numbers are assigned to numeric avariables and characters are

assigned to string variables.

3. D. The difference between NEW and CALL CLEAR is that CALL. CLEAR only
| clears the screen and NEW both clears the screen and erases the

computer's memory.
4. ¢E. All of the given answers are valid ways to correct errors.

5. A matched with Z. A comma displays each item 1in a different print zone.
8 matched with X. A semicolon displays items close together.
C matched with Y. 0 colon displays items on separate lines.

4. A. The numbers within the parentheses after a CALL HCHAR or CALL VCHAR
| command specify (rows column, character-code, number of repetitiaons).

Page /8

P

0R66P T1-99/7/2 Book 1

Answers to Review aﬁ Page 51

1.
Cu

3.

S.

Line numbers

EDIT lipe-pumber <(press ENIER)

lipe-oumber (press UP ARROW or DOWN ARROW)

Colan (3)
10 INPUT “LENGTH?":L

BREAK or CLEAR

Nes ted

BASIC far Beginners

Page /9

W Fiad Yo o LYYy A iy ew DM dle i s _, L S -

Answers to Review an Page //
1. Multiplications and divisions are performed first.

2. You can insert parentheses to change the normal order of arithmetic
operations.

3. The INT function truncates (deletes) any fractional paft of a numbery thus,
INT makes the number an integer.

4. RND genarates the same series of numbers. RANDOMIZE causes the RND
function to generate truly random numbers.

. If the condition is true, the computer branches to the line number
specified.

If the condition is false, the computer simply proceeds to the next line in
SUCCEessS10N.

Page B0

Ochdor 1i-YYre BOORKR s

Index

Arithmetic Operators
CALL CLEAR
CALL. HCHAR
CALL VCHAR

RELete
EDIT
Error Correction

Error Messages

FOR-NEXT

GOTO (GO TO)

IF THEN

Immediate Mode

INPUT .

INSert

INT

LET

LIST

NEW

PRINT

Print Separators
Colon
Conma
Semicolon

RANDOMIZE

RND

RUN

"~ Variables

Numeric

String

LH2LL |G

LS Ll i S

Page 81

